Wednesday, 31 December 2014

Hand Scraped Flooring: Points to Keep in Mind

The demand for hand-scraped flooring is growing. Yet, this type of flooring, in terms of appearance, isn't like any other. If you are one of the many considering it for your home, what points do you need to keep in mind as you look for the right type of hand-scraped hardwood?

First, nearly all species – domestic and exotic – are available as this distressed variety. Species from white oak to Brazilian cherry are all available with this distressed and rustic look. And, any floor of a building can have hand-scraped flooring, as both solid and engineered types are distressed. As you look at different types of hand-scraped flooring, think about where you will be installing it into your home, and plan accordingly with the right type of solid or engineered hardwood.

What's most notable about hand-scraped hardwood is its creation. All planks are distressed by hand, and as a result, no two appear similar. Multiple methods are used for distressing hardwood, including the following techniques for aging, scraping, or finishing.

Aged hardwood goes by one of two names: Time Worn Aged or Antique. Both are similar, but a lower grade is used for Antique flooring. In addition to being aged, the hardwood's distressed appearance is accented further through darker staining, highlighting the grain, or contouring.

Scraping techniques alter the texture of the hardwood, making an otherwise smooth surface rough. Wire Brushed is a term used to indicate hand-scraped flooring with removed sapwood and accented grain. Hand-sculpted, on the other hand, still has texture but is smoother than other varieties. Hardwood that is Hand Hewn and Rough Sawn has the roughest texture for hand-scraped flooring, with even saw marks visible.

Flooring that uses finish to give hardwood an aged texture is usually sold as French Bleed. Such hand-scraped flooring has deeper beveled edges, and the joints of the floor are highlighted with darker stain. Also a somewhat superficial type of hand-scraped flooring is pegged. Considered to be decorative only, pegged flooring must not be fastened directly onto a subfloor.

If you want an even less uniform appearance for your floor, consider having it custom distressed. In this case, after the unfinished hardwood is installed, a professional comes in to alter it through beating with chains, pickeling, fastening with antique nails, or bleaching. After, a finish is applied.

Also as you look at hand-scraped hardwood, think about your flooring long term. Will you want a distressed appearance a decade or more down the line? If not, plan ahead by going with flooring that can be sanded down: solid hardwood or an engineered variety with a thicker wear layer.

If, on the other hand, you plan to keep the hand-scraped flooring, think about how you will refinish it years down the line. Ideally, to keep up the distressed look without diminishing it through sanding, you will need a floor abrader to remove only the finish, or be prepared to have a professional refinish your floors.

Source:http://www.articlesbase.com/home-improvement-articles/hand-scraped-flooring-points-to-keep-in-mind-5435851.html

Tuesday, 30 December 2014

Web Data Scraping Services Have Various Method Of Business

Magnetic or optical data removal or Data Scraping Services is a term that refers to the elimination of digital storage media. Data Scraping Services of the method varies, depending on medium and method used in the process.

Similarly, patents, models, business strategies and other confidential business information, including sensitive data, can be easily accessed by others if the data is not deleted.As I said in the beginning, Data Scraping Services methods vary depending on the storage medium. For each storage medium, there are a variety of Data Scraping Services techniques.

Optical media such as  that can be destroyed by the plastic granulating. This method does not extract information, but makes recovery almost impossible. However, removal of thin film that coats the top of the disk, scraping, sanding by hand or destroy physical data. In contrast, using the microwave, a less traditional technologies, stable and disk storage layer of the thin film is very effective for the most common cause sparks to load.

Typical modern magnetic media and hard drives, tape backup units of such media is possible, but in the face of such devices requires considerable financial investment in the plant. Acids, in particular, nitric acid, 50% concentration in the iron oxide layer to react with violence, it will be completely destroyed within a few minute. In some cases it may be a storage alternative for incineration. However, this may inadvertently expose caseinogens operator and may be restricted in certain countries.

Data Scraping Services, on the other hand, is defined by Wikipedia as "an automatic search for large stores of data for patterns of practice." In other words, you already know, and you learn things about it useful analysis.

Data Scraping Services is often accompanied by a lot of complex algorithms based on statistical methods. How do you see the data in the first place - is not. Data Scraping Services analysis, you only care about what is already there in many cases, a single-pass binary wipe (to write random zeroes and ones riding) will permanently deletes all data from the storage device to remove.

use of materials recovery.
It is for this reason that the technology has been left until last.
Data Scraping Services, screen scraping is not.
This is a great simplification, so I will work a bit.

Fast-forwarding to the web world today, screen scraping is the information relates to websites. This means that computer programs "crawl" or can "spider" through web sites, data retrieval. people, We deserved pages, text data Scraping Services, automated data collection, data extraction and web site even bloody website if we have a problem it presents some.

Data Scraping Services, on the other hand, is defined by Wikipedia as "an automatic search for large stores of data for patterns of practice." In other words, you already know, and you learn things about it useful analysis. Data Scraping Services is often accompanied by a lot of complex algorithms based on statistical methods. How do you see the data in the first place - is not. Data Scraping Services analysis, you only care about what is already there.

Source:http://www.articlesbase.com/outsourcing-articles/web-data-scraping-services-have-various-method-of-business-5594515.html

Saturday, 27 December 2014

Scraping By

In his classic 1976 Chesapeake portrait, Beautiful Swimmers, William Warner described the scrape boat as "a workboat unlike any other I had ever seen on the Bay." Seeming half as wide as it was long, he said, it looked like a "a miniature battleship." There's a reason for that, of course. It's a classic case of form following function; the boat evolved for one purpose, to ply the Bay's grassy shallows for shedding blue crabs.

Said to "float on a heavy dew," scrape boats run from 26 to 30 feet long and 9 to 10 feet wide. The hull is a shallow-V deadrise that quickly flattens toward the stern, enabling the boat to pull its twin scrapes—rectangular steel frames, each with a trailing mesh bag—in knee-deep waters. The broad beam might sound ungainly, but the hull tapers toward the stern—betraying its sailboat origins. And it has a graceful sheer, flowing from a bow height of a few feet to little more than a foot above the water amidships.

And you want a low freeboard when you spend the whole day hoisting aboard scrapes, which weigh 50 pounds apiece, not including the load of sea grass and crabs that come in too. Low sides or not, there's a higher than average inci-dence of back problems among scrape boat crabbers. They spend long days bending in precisely the position back doctors say puts undue pressure on the lower back as they sort through rolls of grasses to pluck out the peelers and softies. And that alone may be why crab potting is now the far more common way of catching soft crabs.

Some people think that's good, assuming that dragging a scrape across the Bay's beleaguered grass flats must be destructive. But the smooth bar of the scrape, unlike a toothed dredge, doesn't uproot grasses. In fact, where scraping is traditional, the grass beds seem relatively resilient. I've often thought if Maryland and Virginia had stuck with scraping as the major legal way to soft-crab, overfishing might not have become a problem. Pots can be deployed everywhere and by the thousands, whereas scraping is limited to grass beds and to ground covered at three miles per hour; and even the sturdiest waterman can only pull two of them by hand. But peeler pots seem here to stay, and other soft crabbers have taken to using a single, large scrape operated from larger workboats by hydraulic power.

The bottom line is that these lovely, superbly functional expressions of Chesapeake crabbing culture now number only in the dozens, if you count working, wooden models. There are some fiberglass scrape boat hulls in service, and a Carolina skiff or two has been adapted for the task. They are functional, but have little art to them.

It is probably a sign of how fast scrape boats are going that the Smithsonian Institution recently took the lines off Darlene, a scraper worked by Morris Marsh of Smith Island, for its archives. You can see photos of scrape boats, and learn more about the 140-year old history of scraping, from Paula Johnson's fine book, The Workboats of Smith Island. Mr. Marsh, still going strong in his late 60s, is the scraper who took Warner out nearly 40 years ago when he was researching Beautiful Swimmers.

Indeed, scraping seems to win over those who master it. Marsh's father-in-law, Ed Harrison, scraped for almost 70 years, nearly wearing through the cross-planked bottom of his boat—from the inside—with decades of walking the planks, tending his scrapes. And an islander who scrapes with Marsh today, David Laird, says he is 71—one year younger than Scotty Boy, the scrape boat he took over from his dad in 1958. "I wouldn't even know how to crab in another boat," Laird says.

Soft crabs may well be caught—or farmed—a century from now on the Chesapeake; but no one will devise a way to take them so intimately and beautifully from the shallowest marsh edges and tiniest crevices in the shore as the scrapers do.

Source:http://www.articlesbase.com/culture-articles/scraping-by-1560919.html

Wednesday, 24 December 2014

Choose Mining Wear Parts Wisely

It is important to choose a reputable supplier of mining wear parts; one that has been acknowledged as a leader in mining expertise. You will want to research and seek out a company that specializes in the engineering, manufacturing, procurement and design of mining wear parts and who has access to a multitude of patterns and templates to choose from.

It is vital to find a company that invites you to put them to the test; a company that is committed to selling more than just a product, standing behind the parts that they design and manufacture with an unprecedented industry guarantee. Some companies are so confident in their products that each wear part is stamped with their logo, identifying it as a superior product.

You will also want to find a company that takes pride in establishing strong customer relationships and who employs people who are as equally committed to providing outstanding service with customer satisfaction a priority. Your research will help you find a mining wear parts company that guarantees that if they do not have the part available, that they will find it for you or are capable of custom designing products to your exact specifications.

If you stop to consider the ramifications of an equipment malfunction or breakdown on production quotas, the significance of reliable parts becomes readily apparent. The impact can be far reaching if it halts production while the necessary repairs are completed. The ugly reality is that downtime incurs financial losses.

While the cost of aftermarket replacement mining wear parts is one factor, the installation of the part is equally as important. It is vital that aftermarket parts are built to a rugged standard to endure the rigorous industrial demands placed on them. Mining wear parts are routinely subjected to high stress abrasion and impact. The fabricated parts need to have the structural strength to be wear resistant with extended usage. Hardened manganese is the preferred material of choice to impart added strength and avoid premature breakage and replacement. Using inferior quality parts may result in the necessity of replacing them prematurely if they do not withstand the wear and tear that they are subjected to daily. While a few dollars may be saved initially by purchasing inferior mining wear parts, production costs can dramatically increase if frequent breakdowns occur and manpower hours are wasted in the field. Efficient use of manpower is an important budget consideration. Reliability is an absolute necessity w
hen you have production deadlines to meet and operations can quickly grind to a standstill when production is halted.

Quality assurance management monitors the consistency of the parts, demanding that they are machined within precise measurements. In addition, they focus on striving to improve the quality of parts as new technology becomes available. Using precision made, high quality wear parts can make your business more competitive, giving you an advantage and improving your bottom line.

Source:http://ezinearticles.com/?Choose-Mining-Wear-Parts-Wisely&id=6691631

Monday, 22 December 2014

Scraping table from any web page with R or CloudStat

Scraping table from any web page with R or CloudStat:

You need to use the data from internet, but don’t type, you can just extract or scrape them if you know the web URL.

Thanks to XML package from R. It provides amazing readHTMLtable() function.

For a study case,

I want to scrape data:

    US Airline Customer Score.
    World Top Chess Players (Men).

A. Scraping US Airline Customer Score table from

http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines

Code:

airline = ‘http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines’

airline.table = readHTMLTable(airline, header=T, which=1,stringsAsFactors=F)

Result:

> library(XML)

Warning message:

package "XML" was built under R version 2.14.1

> airline = "http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines"
> airline.table = readHTMLTable(airline, header=T, which=1,stringsAsFactors=F)
> airline.table

                     Base-line 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10
1          Southwest        78 76 76 76 74 72 70 70 74 75 73 74 74 76 79 81 79
2         All Others        NM 70 74 70 62 67 63 64 72 74 73 74 74 75 75 77 75
3           Airlines        72 69 69 67 65 63 63 61 66 67 66 66 65 63 62 64 66
4        Continental        67 64 66 64 66 64 62 67 68 68 67 70 67 69 62 68 71
5           American        70 71 71 62 67 64 63 62 63 67 66 64 62 60 62 60 63
6             United        71 67 70 68 65 62 62 59 64 63 64 61 63 56 56 56 60
7         US Airways        72 67 66 68 65 61 62 60 63 64 62 57 62 61 54 59 62
8              Delta        77 72 67 69 65 68 66 61 66 67 67 65 64 59 60 64 62
9 Northwest Airlines        69 71 67 64 63 53 62 56 65 64 64 64 61 61 57 57 61

  11 PreviousYear%Change FirstYear%Change

1 81                 2.5              3.8
3 65                -1.5             -9.7
4 64                -9.9             -4.5
5 63                 0.0            -10.0
7 61                -1.6            -15.3
8 56                -9.7            -27.3
9  #                 N/A              N/A

>

B. Scraping World Top Chess players (Men) table from http://ratings.fide.com/top.phtml?list=men

Code:

chess = ‘http://ratings.fide.com/top.phtml?list=men’
chess.table = readHTMLTable(chess, header=T, which=5,stringsAsFactors=F)

Result:

> chess = "http://ratings.fide.com/top.phtml?list=men"
> chess.table = readHTMLTable(chess, header=T, which=5,stringsAsFactors=F)
> chess.table

     Rank                       Name Title Country Rating Games B-Year

1      1           Carlsen, Magnus    g    NOR  2835   17  1990
2      2            Aronian, Levon    g    ARM  2805   25  1982
3      3         Kramnik, Vladimir    g    RUS  2801   17  1975
4      4        Anand, Viswanathan    g    IND  2799   17  1969
5      5         Radjabov, Teimour    g    AZE  2773    9  1987
6      6          Topalov, Veselin    g    BUL  2770    9  1975
7      7          Karjakin, Sergey    g    RUS  2769   16  1990
8      8         Ivanchuk, Vassily    g    UKR  2766   16  1969
9      9     Morozevich, Alexander    g    RUS  2763    6  1977
10    10           Gashimov, Vugar    g    AZE  2761    9  1986
11    11       Grischuk, Alexander    g    RUS  2761    8  1983
12    12          Nakamura, Hikaru    g    USA  2759   17  1987
13    13            Svidler, Peter    g    RUS  2749   17  1976
14    14    Mamedyarov, Shakhriyar    g    AZE  2747    9  1985
15    15       Tomashevsky, Evgeny    g    RUS  2740    0  1987
16    16            Gelfand, Boris    g    ISR  2739    9  1968
17    17          Caruana, Fabiano    g    ITA  2736   19  1992
18    18       Nepomniachtchi, Ian    g    RUS  2735   16  1990
19    19                 Wang, Hao    g    CHN  2733    6  1989
20    20              Kamsky, Gata    g    USA  2732    0  1974
21    21  Dominguez Perez, Leinier    g    CUB  2730    6  1983
22    22         Jakovenko, Dmitry    g    RUS  2729    0  1983
23    23        Ponomariov, Ruslan    g    UKR  2727   13  1983
24    24          Vitiugov, Nikita    g    RUS  2726    1  1987
25    25            Adams, Michael    g    ENG  2724   17  1971
26    26               Leko, Peter    g    HUN  2720    9  1979
27    27            Almasi, Zoltan    g    HUN  2717    8  1976
28    28               Giri, Anish    g    NED  2714   15  1994
29    29            Le, Quang Liem    g    VIE  2714    0  1991
30    30             Navara, David    g    CZE  2712    8  1985
31    31            Shirov, Alexei    g    LAT  2710   13  1972
32    32             Polgar, Judit    g    HUN  2710    0  1976
33    33     Riazantsev, Alexander    g    RUS  2710    0  1985
34    34       Wojtaszek, Radoslaw    g    POL  2706    8  1987
35    35      Moiseenko, Alexander    g    UKR  2706    7  1980
36    36   Vallejo Pons, Francisco    g    ESP  2705   15  1982
37    37        Malakhov, Vladimir    g    RUS  2705    0  1980
38    38            Jobava, Baadur    g    GEO  2704   23  1983
39    39           Bacrot, Etienne    g    FRA  2704   14  1983
40    40          Laznicka, Viktor    g    CZE  2704    8  1988
41    41            Sutovsky, Emil    g    ISR  2703    8  1977
42    42        Naiditsch, Arkadij    g    GER  2702   14  1985
43    43         Movsesian, Sergei    g    ARM  2700    9  1978
44    44       Sasikiran, Krishnan    g    IND  2700    9  1981
45    45   Vachier-Lagrave, Maxime    g    FRA  2699   13  1990
46    46            Dreev, Aleksey    g    RUS  2698    6  1969
47    47           Efimenko, Zahar    g    UKR  2695    8  1985
48    48         Volokitin, Andrei    g    UKR  2695    0  1986
49    49                 Wang, Yue    g    CHN  2694    6  1987
50    50        Fressinet, Laurent    g    FRA  2693   17  1981
51    51                Li, Chao b    g    CHN  2693    6  1989
52    52            Grachev, Boris    g    RUS  2693    0  1986
53    53      Nielsen, Peter Heine    g    DEN  2693    0  1973
54    54            Van Wely, Loek    g    NED  2692   13  1972
55    55    Bruzon Batista, Lazaro    g    CUB  2691   19  1982
56    56           McShane, Luke J    g    ENG  2691    8  1984
57    57            Eljanov, Pavel    g    UKR  2690   10  1983
58    58      Kasimdzhanov, Rustam    g    UZB  2689   14  1979
59    59         Inarkiev, Ernesto    g    RUS  2689    6  1985
60    60         Zvjaginsev, Vadim    g    RUS  2688    8  1976
61    61         Andreikin, Dmitry    g    RUS  2688    0  1990
62    62    Areshchenko, Alexander    g    UKR  2688    0  1986
63    63         Rublevsky, Sergei    g    RUS  2686    0  1974
64    64         Akopian, Vladimir    g    ARM  2685    8  1971
65    65          Potkin, Vladimir    g    RUS  2684    0  1982
66    66       Sargissian, Gabriel    g    ARM  2683   15  1983
67    67            Berkes, Ferenc    g    HUN  2682   16  1985
68    68           Bologan, Viktor    g    MDA  2680   15  1971
69    69          Bauer, Christian    g    FRA  2679   24  1977
70    70          Tiviakov, Sergei    g    NED  2677   22  1973
71    71            Short, Nigel D    g    ENG  2677   15  1965
72    72        Motylev, Alexander    g    RUS  2677    6  1979
73    73         Gharamian, Tigran    g    FRA  2676    0  1984
74    74          Kobalia, Mikhail    g    RUS  2673    0  1978
75    75              Meier, Georg    g    GER  2671    9  1987
76    76       Onischuk, Alexander    g    USA  2670   13  1975
77    77              Bu, Xiangzhi    g    CHN  2670    6  1985
78    78          Alekseev, Evgeny    g    RUS  2670    0  1985
79    79            Azarov, Sergei    g    BLR  2667    0  1983
80    80        Kryvoruchko, Yuriy    g    UKR  2666    0  1986
81    81             Balogh, Csaba    g    HUN  2665    8  1987
82    82           Harikrishna, P.    g    IND  2665    6  1986
83    83       Khismatullin, Denis    g    RUS  2664    8  1984
84    84   Nguyen, Ngoc Truong Son    g    VIE  2662    6  1990
85    85           Fridman, Daniel    g    GER  2660   11  1976
86    86              Smirin, Ilia    g    ISR  2660    7  1968
87    87               Ding, Liren    g    CHN  2660    6  1992
88    88         Sadler, Matthew D    g    ENG  2660    3  1974
89    89            Korobov, Anton    g    UKR  2660    0  1985
90    90          Cheparinov, Ivan    g    BUL  2659   18  1986
91    91          Timofeev, Artyom    g    RUS  2659    0  1985
92    92           Georgiev, Kiril    g    BUL  2658   17  1965
93    93           Bartel, Mateusz    g    POL  2658    9  1985
94    94          Zhigalko, Sergei    g    BLR  2658    8  1989
95    95         Feller, Sebastien    g    FRA  2658    0  1991
96    96            Ragger, Markus    g    AUT  2655   17  1988
97    97         Jones, Gawain C B    g    ENG  2653   27  1987
98    98                So, Wesley    g    PHI  2653    5  1993
99    99              Milov, Vadim    g    SUI  2653    0  1972
100  100           Gupta, Abhijeet    g    IND  2652    9  1989
101  101            Postny, Evgeny    g    ISR  2652    8  1981
102  102             Roiz, Michael    g    ISR  2652    6  1983
103  103           Gyimesi, Zoltan    g    HUN  2652    4  1977
104  104          Nikolic, Predrag    g    BIH  2652    2  1960

>

Done. You had successfully scraping data from any web page with R or CloudStat.

Then, you can analyze as usual! Great! No more retype the data. Enjoy!

Source: http://www.r-bloggers.com/scraping-table-from-any-web-page-with-r-or-cloudstat/

Thursday, 18 December 2014

Extracting Wisdom Teeth Tips

It is believed that due to evolution, our jaws are now smaller than our ancient ancestors'. For this reason, our mouths often do not have adequate room to accommodate the third molars, making them basically useless and in some cases detrimental. Even if they are not impacted, wisdom teeth may be hard to clean, and therefore require removal to reduce the probability of caries and infection.

As part of your routine dental visits, your dentist will likely take X-rays to monitor the development of your third molars. Your dentist will likely recommend removing them as soon as possible to avoid any complications. The extraction of wisdom teeth can sometimes be a costly and daunting procedure; for these reasons many patients delay having them extracted. However, if the impacted teeth become infected, it is important to see your dental professional at once. Symptoms of infection due to impacted wisdom teeth include;

•    Pain in the gums and surrounding areas
•    Red or inflamed gums
•    Tender or bleeding gums
•    Inflammation around the face and jaw
•    Bad breath (halitosis)
•    Frequent headaches

If a single molar needs to be extracted, local anesthetic will be used. In the case where several or all the teeth need extraction, the patient will usually be "put under" using a general anesthetic. If you have an infection or medical complications that put you at a higher than normal risk, the surgery may be performed at a hospital. Extraction of the wisdom teeth is a day surgery, and patients are usually able to return to normal activities in a day or so. You may be prescribed antibiotics prior to the surgery, and you will likely be asked not to eat or drink the night before the surgery.

During the surgery, your dentist makes an incision in the gum tissue covering the tooth. Once the tooth is exposed, the dentist may cut the tooth into smaller pieces to make extraction easier. After the extraction you will be given stitches to mend the gum tissue. You may need to return a few days later to have the stitches removed. You will be monitored after the surgery to ensure that you are not bleeding excessively.

The best time for extraction is when the patient is in their late teens to avoid unnecessary complications. Wisdom teeth extractions performed later in life are still beneficial, but the removal may be more difficult and healing may take longer. Therefore it is wise to have a conversation with your dentist regarding your wisdom teeth as early as possible.

Most people will experience the emergence of their wisdom teeth at some point in their life, and extraction is sometimes necessary as a preventative measure or to fix an actual problem or to prevent problem. It is best to deal with any problems regarding your wisdom teeth as soon as possible to avoid unnecessary difficulties.

Source:http://ezinearticles.com/?Extracting-Wisdom-Teeth-Tips&id=7788863

Tuesday, 16 December 2014

Importance of Data Mining Services in Business

Data mining is used in re-establishment of hidden information of the data of the algorithms. It helps to extract the useful information starting from the data, which can be useful to make practical interpretations for the decision making.

It can be technically defined as automated extraction of hidden information of great databases for the predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making. Although data mining is a relatively new term, the technology is not. It is thus also known as Knowledge discovery in databases since it grip searching for implied information in large databases.

It is primarily used today by companies with a strong customer focus - retail, financial, communication and marketing organizations. It is having lot of importance because of its huge applicability. It is being used increasingly in business applications for understanding and then predicting valuable data, like consumer buying actions and buying tendency, profiles of customers, industry analysis, etc. It is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, e-commerce, customer relationship management and financial services.

However, the use of some advanced technologies makes it a decision making tool as well. It is used in market research, industry research and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, scientific tests, genetics, financial services and utilities.

Data mining consists of major elements:

•    Extract and load operation data onto the data store system.
•    Store and manage the data in a multidimensional database system.
•    Provide data access to business analysts and information technology professionals.
•    Analyze the data by application software.
•    Present the data in a useful format, such as a graph or table.

The use of data mining in business makes the data more related in application. There are several kinds of data mining: text mining, web mining, relational databases, graphic data mining, audio mining and video mining, which are all used in business intelligence applications. Data mining software is used to analyze consumer data and trends in banking as well as many other industries.

Source:http://ezinearticles.com/?Importance-of-Data-Mining-Services-in-Business&id=2601221

Monday, 15 December 2014

Autoscraping casts a wider net

We have recently started letting more users into the private beta for our Autoscraping service. We’re receiving a lot of applications following the shutdown of Needlebase and we’re increasing our capacity to accommodate these users.

Natalia made a screencast to help our new users get started:

It’s also a great introduction to what this service can do.

We released slybot as an open source integration of the scrapely extraction library and the scrapy framework. This is the core technology behind the autoscraping service and we will make it easy to export autoscraping spiders from Scrapinghub  and run them completely with slybot – allowing our users to have the flexibility and freedom provided by open source.

Source:http://blog.scrapinghub.com/2012/02/27/autoscraping-casts-a-wider-net/

Saturday, 13 December 2014

ScraperWiki: A story about two boys, web scraping and a worm

“It’s like a buddy movie.” she said.
Not quite the kind of story lead I’m used to. But what do you expect if you employ journalists in a tech startup?
“Tell them about that computer game of his that you bought with your pocket money.”
She means the one with the risqué name.
I think I’d rather tell you about screen scraping, and why it is fundamental to the nature of data.

About how Julian spent almost a decade scraping himself to death until deciding to step back out and build a tool to make it easier.

I’ll give one example.
Two boys
In 2003, Julian wanted to know how his MP had voted on the Iraq war.
The lists of votes were there, on the www.parliament.uk website. But buried behind dozens of mouse clicks.
Julian and I wrote some software to read the pages for us, and created what eventually became TheyWorkForYou.

We could slice and dice the votes, mix them with some knowledge from political anaroks, and create simple sentences. Mini computer generated stories.

“Louise Ellman voted very strongly for the Iraq war.”
You can see it, and other stories, there now. Try the postcode of the ScraperWiki office, L3 5RF.

I remember the first lobbiest I showed it to. She couldn’t believe it. Decades of work done in an instant by a computer. An encyclopedia of data there in a moment.

Web Scraping

It might seem like a trick at first, as if it was special to Parliament. But actually, everyone does this kind of thing.

Google search is just a giant screen scraper, with one secret sauce algorithm guessing its ranking data.
Facebook uses scraping as a core part of its viral growth to let users easily import their email address book.

There’s lots of messy data in the world. Talk to a geek or a tech company, and you’ll find a screen scraper somewhere.

Why is this?
It’s Tautology

On the surface, screen scrapers look just like devices to work round incomplete IT systems.

Parliament used to publish quite rough HTML, and certainly had no database of MP voting records. So yes, scrapers are partly a clever trick to get round that.

But even if Parliament had published it in a structured format, their publishing would never have been quite right for what we wanted to do.

We still would have had to write a data loader (search for ‘ETL’ to see what a big industry that is). We still would have had to refine the data, linking to other datasets we used about MPs. We still would have had to validate it, like when we found the dead MP who voted.

It would have needed quite a bit of programming, that would have looked very much like a screen scraper.

And then, of course, we still would have had to build the application, connecting the data to the code that delivered the tool that millions of wonks and citizens use every year.

Core to it all is this: When you’re reusing data for a new purpose, a purpose the original creator didn’t intend, you have to work at it.

Put like that, it’s a tautology.
A journalist doesn’t just want to know what the person who created the data wanted them to know.
Scrape Through
So when Julian asked me to be CEO of ScraperWiki, that’s what went through my head.
Secrets buried everywhere.

The same kind of benefits we found for politics in TheyWorkForYou, but scattered across a hundred countries of public data, buried in a thousand corporate intranets.

If only there was a tool for that.
A Worm
And what about my pocket money?
Nicola was talking about Fat Worm Blows a Sparky.
Julian’s boss’s wife gave it its risqué name while blowing bubbles in the bath. It was 1986. Computers were new. He was 17.

Fat Worm cost me £9.95. I was 12.
[Loading screen]
I was on at most £1 a week, so that was ten weeks of savings.
Luckily, the 3D graphics were incomprehensibly good for the mid 1980s. Wonder who the genius programmer is.
I hadn’t met him yet, but it was the start of this story.

Source:https://blog.scraperwiki.com/2011/05/scraperwiki-a-story-about-two-boys-web-scraping-and-a-worm/

Thursday, 11 December 2014

A quick guide on web scraping: Why and how

Web scraping, which is the collection and cleaning of online data, is the first step in any
data-driven project. Here’s a short video that explains what scraping is, and how to create
automated scraping jobs using a digital tool.

This is a 15-minute video created by an instructor at Ohio State University. In the first six
minutes, the instructor talks about why we need web scraping; he then shows how to use a
scraping tool, OutWit Hub, to collect data scattered in a large database.

FYI: read reviews by Reporters’ Lab of OutWit Hub and other web scraping tools.

Source: http://www.mulinblog.com/quick-guide-web-scraping/


Thursday, 4 December 2014

Scraping and Analyzing Angel List Syndicates: Kimono Labs + Silk

Because we use Silk to tell stories and visualize data, we are always looking for interesting ways to pull data into a Silk. Right now that means getting data into the CSV format. Fortunately, a wave of new and powerful visual webscraping tools and services have emerged. These make it very simple for anyone (no technical skills required) to scrape data from a website and export that data into a CSV which we can quickly upload into a Silk.

Cool New Scraping Tools

One of the tools we love in this new space is Kimono Labs. Backed by Y Combinator, Kimono combines a visual scraping editor with the ability to do very granular code-inspector level editing to scraping paths. Saved scrapes can be turned into APIs and exported as JSON. Kimono also lets you save time-series versioning of scrapes.

Data from angel-list-syndicates.silk.co

Like many startups, we watch the goings on at AngelList very closely. Syndicates are of particular interest. Basically, these are DIY venture capital pools that allow a qualified investor to serve as a syndicate leader and aggregate small investments from other qualified investors who are members of AngelList. The idea of the syndicates is to democratize the VC process and make it easier and less risky for individuals to participate.

We used Kimono to scrape information on the Top 25 Syndicates ranked by dollars backing each round. Kimono makes it very easy to visually designate which parts of a page to scrape and how many rows there are on a page. (Here you can see me highlighting the minimum dollar investment). We downloaded the information as a CSV and did a quick scrub to get it ready for upload to Silk. The process took no more than 15 minutes.

We could tell by eyeballing the numbers beforehand that a serious Power Law was in effect. And the actual data analysis on Silk bore this out. We chose to use a pie chart to show distribution. Three syndicates control nearly two-thirds of all the committed capital by Angel.co members in the syndicate program. One of the top three - Tim Ferriss - has no background as a venture capitalist or building technology companies but is rapidly becoming a force in startup investing. The person with the largest committed syndicate pool, Gil Penachina, is someone who is a quiet mover and shaker in Silicon Valley but he clearly packs a huge punch.

The largest syndicate in terms of likely commitments of deals per year is Foundry Group Angels, a group led by Brad Feld (@bfeld). While they put in less per deal, they are planning to back over 50 deals per year - a huge number. Trailing far behind those three was media impresario and Launch conference mogul Jason Calacanis, who is one of the most visible people in the startup space.

Source: http://blog.silk.co/post/83501793279/scraping-and-analyzing-angel-list-syndicates